Effective page recommendation algorithms based on distributed learning automata and weighted association rules

نویسندگان

  • R. Forsati
  • M. R. Meybodi
چکیده

Different efforts have been done to address the problem of information overload on the Internet. Recommender systems aim at directing users through this information space, toward the resources that best meet their needs and interests by extracting knowledge from the previous users’ interactions. In this paper, we propose three algorithms to solve the web page recommendation problem. In our first algorithm, we use distributed learning automata to learn the behavior of previous users’ and recommend pages to the current user based on learned patterns. By introducing a novel weighted association rule mining algorithm, we present our second algorithm for recommendation purpose. Also, a novel method is proposed to pure the current session window. One of the challenging problems in recommendation systems is dealing with unvisited or newly added pages. By considering this problem and improving the efficiency of first two algorithms we present a hybrid algorithm based on distributed learning automata and proposed weighted association rule mining algorithm. In the hybrid algorithm we employ the HITS algorithm to extend the recommendation set. Our experiments on real data set show that the hybrid algorithm performs better than the other algorithms we compared to and, at the same time, it is less complex than other proposed algorithms with respect to memory usage and computational cost too. 2009 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining

The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...

متن کامل

Web Recommendation using Semantic Web and Distributed Learning Automata and Graph Partitioning

Recommendation systems aim at directing users toward the resources that best meet their needs and interests. One of the challenging tasks in improving web recommendation algorithms is the simultaneous use of users’s activity log and hyperlink graph of the web site. In this paper, we propose a new recommendation algorithm based on semantic web and web usage data and hyperlink graph of a web site...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Hybrid Adaptive Educational Hypermedia ‎Recommender Accommodating User’s Learning ‎Style and Web Page Features‎

Personalized recommenders have proved to be of use as a solution to reduce the information overload ‎problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers ‎suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. ‎Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009